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Abstract-A numerical investigation is conducted for the case of turbulent flow in the unobstructed space 
between a pair of centrally clamped coaxial disks corotating in a fixed axisymmet~c enclosure. The finite 
difference procedure of Chang ef nl. (J. Heat Transfer 111, 625-632 (1989)) is extended to include a 
standard two-equation (k-E) model of turbulence in the core of the flow. A Driest relation, 

for the effects of and wall shear on the energy-containing length is 
used in to model the The set of 

is solved assuming a constant property, circumferentially 
and heat transfer are good agreement with time- 

averaged The predictions reveal a flow that, in non-dimensional variables, tends to a 
limiting asymptotic state at high Reynolds In the absence of of cross- 
stream eddies the enclosure the rotation of 

in excess of 2400 ‘pm in and small 
of shear and temperature (due to in the vicinity of enclosure 

wail. The Aow and its heat transfer can drastically altered by combing effects of 
and axial blowing. Specifically, it shown the shear and 

at the curved enclosure 

1. INTRODUCTION 

The problem of interest 

ROTATING disk flows have been the subject of con- 
siderable attention, for fundamental as well as prac- 
tica reasons. In this regard, for example, free-spinning 
disks have served as models for understanding geo- 
physical and engineering phenomena and have been 
investigated extensively, both experimentally and 
theoretically [I]. We are concerned here with the flow 
of air that arises in the unobstructed space between 
a pair of centrally clamped, coaxial disks that are 
corotating in a fixed axisymmetric enclosure or 
shroud. This configuration is of special relevance to 
magnetic disk storage systems in the computer indus- 
try, and also finds important applications in rotating 
machinery. 

Figure 1 illustrates the basic geometrical element of 
interest and defines the coordinate system and prob- 
lem notation. It provides the side view of a pair of 
disks that are corotating at angular velocity R. As will 
be discussed, calculations (supported by measure- 
ments) for this configuration show that the cir- 
cumferential component of motion sets up an out- 
wardly-directed centrifugal force field that is opposed 
by an inwardly-directed force due to the radial press- 
ure gradient. The pressure gradient displaces slow 
moving fluid from the enclosure wall region into the 
core of the flow, along the symmetry plane, while the 
centrifugal force drives fluid in the thin boundary 
layer adjacent to each disk towards the enclosure wali. 
The result is a cross-stream secondary flow, similar 

t Author to whom correspondence should be addressed. 

(but of opposite sense of rotations to that observed in 
curved pipes and ducts. Nearer the hub, in the absence 
of imposed throughflows, the air motion approaches 
the condition of solid body rotation. Above a critical 
speed of rotation, instabilities and mean flow un- 
steadiness arise. At still higher rotational speeds, a 
transition from Iaminar to turbulent flow takes place 
at a critical location, R,, between the hub and the 
shroud. 

Little of the information that is available on free- 
spinning disks is appli~abIe to confined corotating 
disks. This is mainly due to the presence of the fixed 
enclosure wall (or ‘shroud’) which imparts a dominant 
shearing action on the flow ; a constraint that is absent 
in the free-spinning disk case but present in many 
systems of practical interest. 

ENCLOSURE WALL 

FIG. 1. Basic element of the configuration of interest defining 
variabks and coordinate system notation. The origin ofcoor- 
dinates is located at the intersection of the axis of rotation 
and the geometrical symmetry plane between the two disks. 

2701 
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1 
NOMENCLATURE 

A’ constant in equation (11) Ts temperature of the enclosure wall or 
a distance between disk periphery and shroud 

enclosure wall U mean radial velocity component 
b disk thickness 11, wall stress velocity, t r,,,,‘p 
C, blowing parameter in radial (i = r) and V mean circumferential velocity 

axial (i = :) directions, Q,/vR, component 

c, specific heat at constant pressure P r.m.s. of circumferential velocity 
c,, c?. C~ model constants (see Table 1) component 
F dimensionless shear stress (see equation W’ mean axial velocity component 

(19)) !’ wall coordinate 
f,, f2, f, model functions (see Table 1) J .+ dimensionless wall coordinate, _rrr,/v 
H distance between a pair of corotating I axial coordinate direction. 

disks 
K thermal conductivity 
k turbulent kinetic energy Greek symbols 
L? curvature modified mixing length 3, effective thermal diffusivity 
Ill van Driest mixing length (see equation B constant in equation for I, 

(11)) 6 boundary layer thickness 
IV11 Nusselt number (see equation (IS)) & dissipation of turbulent kinetic energy 
P pressure 0 circumferential coordinate direction 

Qi air volume flow rate in radial (i = r) and K von Karman constant 
axial (i = :) directions ii effective diffusivity for X- 

cl”, heat flux at enclosure wall ;., effective diffusivity for E 

RI hub radius p dynamic viscosity 

RI disk radius 1’ kinematic viscosity 

RC critical radius for transition to turbulent I’ E effective kinematic viscosity. VA V, 
flow turbulent kinematic viscosity 

Ri Richardson number (see equations (12) 1;’ density 
and (13)) OP turbulent Prandtl number fork 

Re disk Reynolds number based on H, 07 turbulent Prandtl number for T 
RR2 H/v 08 turbulent Prandtl number for E 

Rc, disk Reynolds number based on R2, 5 shear stress 
l2R;/v 7c, wall shear stress 

r radial coordinate direction r+ dimensionless stress, r/s,, 
T temperature @ viscous dissipation 

Ttl temperature of the hub R disk angular velocity. 

Due to enclosure asymmetries and the presence of ning and corotating disk flows have been given in 
objects between the disks, the flow fields in practical 
disk storage systems are highly complex and unsteady. 
While it is important to render such flows amenable 
to numerical prediction, it is appropriate to first study 
unobstructed, axisymmetric configurations. As will be 
shown, such configurations result in very interesting 
phenomena in their own right and constitute a major 
challenge both from the numerical calculation and 
turbulence modelling points of view. 

1.2. Earlier work 
Because this is a computational study, the literature 

pertaining to numerical calculations utilizing pheno- 
menological models of turbulence is of special 
interest. This is discussed below, following a summary 
of related experimental investigations. 

12.1. ExperimenraI studies. Reviews of free-spin- 

refs. [I, 21. Here we present information pertinent to 
centrally clamped, unobstructed, coasial disks coro- 
tating in an axisymmetric enclosure. 

The visualization experiments of refs. [2-51 provide 
qualitative insight concerning the effect of con- 
figuration geometry on the flows that arise between 
and about two or more corotating disks. In particular, 
these studies reveal circumferentially periodic, radially 
directed inflows and outflows associated with axially- 
aligned vertical structures that are induced by shear- 
ing of the flow at the shroud. The visualization exper- 
iments of refs. [2. 31 are for disk contigurations that 
are very similar to the one studied here. They show 
clearly that at a fixed rotational speed the axial vor- 
tices form an approximately regular polygon and that 
they vary discretely in number from 6 (at loa 
rotational speeds) to 2 (at high rotational speeds). 
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This variation has been determined quantitatively in 
ref. [6] from time-resolved velocity measurements 
obtained with a laser-Doppler velocimeter. At high 
rotational speeds, the circumferential component of 
motion of the axial vortices has been stated in ref. [3] 
to lag behind the local disk speed by about 20%. The 
axial vortices appear to be the result of a circum- 
fe~ntially periodic Kelvin-Helmholtz instabiljty [S]. 
In the disk pack experiment of ref. 141 the vortices 
were removed by blowing radially outwards in the 
space between each pair of disks. 

Horizontal roll vortices have also been observed in 
enclosed corotating disk flows [3]. They have the form 
of equi-angular spirals and are embedded in the disk 
boundary layer which is of the order of S = (v/Q)’ ‘. 
In ref. (31 the roll vortices were distributed over the 
whole surface of a disk, as of a disk Reynolds number 
Re, = 8.1 x IO5 approximately, where Re, = QR&b, 
R2 being the radius of the disk. The spirals appear to 
be manifestations of the Ekman layer instability which 
has been investigated in the free-spinning disk studies 
of refs. [7,8-l 11. 

The observations in ref. f3] showed that transition 
to turbulence in the space between corotating disks 
first occurred at the disk periphery, and that the tur- 
bulence advanced radially inwards with increasing 
rotational speed. The time-resolved velocity measure- 
ments of ref. [6] have revealed that transition to tur- 
bulent flow is preceded by a transition from steady 
laminar flow to sinusoidal unsteady laminar flow. 
With reference to Fig. 1, in the test section of ref. [6] : 
H = 0.95 cm, a/H = 0.28, (R,+a- R,),‘H = 5.30, 
RJR, = 1.85, and 7.6 x IO3 < Re c 3.1 x 10J, where 
Re = QR2fi/v. The sinusoidal unsteadiness first 
appeared at about Re = 410, corresponding to 62+2 
‘pm, and turbulence was first detected in the vicinity 
of the shroud for Re > 2150. corresponding to 325 
rpm. The measurements in ref. [6] were made in the 
space between the center pair of four corotating disks. 
With the same apparatus (same dimensions) and 
instrumentation, ref. [12) obtained time-averaged 
mean and r.m.s. values of the circumferential velocity 
component for the case when the outer pair of disks is 
fixed and the center pair corotate. The latter data was 
used to evaluate the numerical model(s) studied here. 

Velocity measurements in the space between a pair 
of rotating coaxial disks of very large aspect ratio, 
(RI-R,)/H, were made in ref. [13], primarily in the 
laminar flow regime, and in ref. [14] in the turbulent 
regime. Turbulent isothermal flow in a rotating cyl- 
indrical cavity has been investigated in refs. [ 15, 161, 
while heat transfer measurements in the same con- 
figuration have been made in refs. 117, 181. In ref. fl8] 
the authors specifically investigated the effects of an 
imposed radial outflow between disks. Together with 
the measurements of ref. [ 121, the data in refs. [ 14, 1 S] 
have served to check the extension of the laminar flow 
numerical procedure of ref. [is] to turbulent flow, the 
subject of this work. 

1.2.2. Theoretical studies. Since the seminal paper 

[20], there have been a number of proposals for tur- 
bulence closure schemes that avoid the use of wall 
functions as empirical ‘patches’ in wall-funded 
flows. A systematic evaluation of eight of these models 
was conducted in ref. (211. The use of wall functions 
requires high Reynolds numbers (so that viscous 
effects are negligible) and a knowledge of what wall 
functions to actually apply. In the complex corotating 
disk flows of interest here, neither condition can be 
satisfied and the wall function approach must be aban- 
doned. The low Reynolds number models reviewed in 
ref. [‘I] incorporate wall damping effects and/or the 
direct effects of molecular viscosity in the modelled 
equations for the kinetic energy of turbulence, k, and 
its rate of dissipation, E. Thus, these effects are already 
accounted for when the turbulent viscosity is evalu- 
ated from k and E. Low Reynolds number models are 
computationally intensive, requiring dense grids in 
near wall regions, In addition, this modelling 
approach still needs improvement if it is to be used 
with confidence to predict near wall flows. Of the 
models evaluated by ref. [21], those due to refs. f22, 
233 are of special interest here. Specifically, the model 
in ref. f22] has been used successfully to predict the 
flow over a free-spinning disk ; and with the Rich- 
ardson number modifications for curvature described 
in ref. [24], to also predict the flows around rotating 
cones and cylinders. 

A less rigorous but much simpler way to account 
for wall damping effects is to use a modified van Driest 
relation [25] to specify the mixing length in the near 
wall region. This approach was discussed in ref. [20] 
where it was pointed out that entirely satisfactory 
prescriptions of the mixing length are rarely possible. 
Notwithstanding, a modified van Driest relation was 
employed in ref. [26] to prescribe the mixing length in 
an extended version of Prandtl’s mixing length 
hypothesis that accounted for the effects of swirl on 
the turbulent viscosity. The mixing length derived 
from the van Driest relation was further modified, by 
using a Richardson number factor to account for the 
direct effects of swirl. The model derived in ref. [26] 
was successfully used to predict the flows around 
rotating disks, cones and cylinders. The discrepancies 
observed between measurements and computations of 
the flows were attributed primarily to the assumption 
of an isotropic turbulent viscosity. 

In a series of studies [27-291 the mixing length 
model of ref. [26] was used to predict fluid motion in 
several axisymmetric disk flow configurations. The 
cases considered include : one disk rotating between 
two fixed flat surfaces, with the enclosure wall station- 
ary ; two disks corotating, with the enclosure wall 
rotating with the disks. Conditions with and without 
radial throughtlow were considered. Even though 
convergence difficulties were reported at high speeds, 
the results obtained showed better agreement with 
experiments and the integral solution than those 
obtained in an earlier study 1301 using a standard, 
high Reynolds number, k--E model. 
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Direct numerical simulations of unobstructed 
rotating disk flows with very large aspect ratio have 
been performed in refs. [31, 321 where their stability 
characteristics and transition to turbulence were 
investigated. Conservation equations were formu- 
lated in terms of the circumferential components of 
velocity and vorticity, and a streamfunction. These 
equations were solved on very fine grids subject to 
circumferentially- and radially-periodic boundary 
conditions. The results reveal unsteady cross-stream 
flows for various combinations of r/H and the inverse 
Ekman number, E- ’ = RH’/v. Although interesting 
in its own right, the configuration considered in these 
studies represents a limiting case of the present work 
where shearing of the flow by the enclosure wall is 
dominant. 

In concluding this section we note that the presence 
of axially-aligned vortices in the enclosed disk exper- 
iments, the number of which depends on the rotation 
speed. raises the question of possible multiple states 
for shrouded corotating disk flows. To our knowl- 
edge. this problem has not been investigated exten- 
sively and all we can presently say is that at high 
rotational speeds, for example, in excess of I200 rpm 
in the experiment of ref. [6], the flow between 
shrouded corotating disks is highly unsteady over 
most of the space between the disks and the number 
of axial vertical structures tends to the limit of 2. 
In contrast, considerable theoretical work has been 
performed on the multiplicity of solutions of the cross- 
stream flow in unshrouded corotating disk con- 
figurations [33-391. Except for ref. [36]. in all cases 
(R? - R,)/H >> I. The analyses show that the par- 
ticular solutions found often depend on the initial 
flow conditions and that their multiplicity increases 
with increasing rotation speed. In this work, 
(RI - R,)/H = O(lO), and the flow near the shroud is 
highly turbulent. Since the turbulent condition is the 
most stable state of motion, one anticipates a tendency 
to statistically stationary flow behavior with increas- 
ing rotational speed. This condition is implied in the 
numerical model discussed below. 

I .3. The present study 
The experimental work in shrouded corotating disk 

configurations reveals three-dimensional, circumfer- 
entially periodic, unsteady turbulent flows at the 
Reynolds numbers of practical interest. Because 
these flows are very difficult to compute in full detail, 
the question should be asked: to what extent will an 
axisymmetric (but three-dimensional), steady rep- 
resentation mimic reality? The objective of this study 
has been to quantify the validity of this approach 
and explain why such a simplified representation of 
unobstructed disk flows yields satisfactory results for 
the mean flow and heat transfer. The advantages of a 
simplified numerical formulation are obvious, if useful 
predictions can be made. Thus, a related objective has 
been to investigate via numerical computation the 
effects of rotation, relative dimensions and blowing 

on the flow between corotating disks in axisymmetric 
enclosures. 

2. NUMERICAL CALCULATION PROCEDURE 

This section summarizes the conservation equa- 
tions and boundary conditions computed numeri- 
cally. The calculation algorithm is essentially that of 
ref. [40]. extended and tested in ref. [I91 for laminar 
disk flows and. as explained here, for turbulent flows. 
Three turbulence models were explored, of which two 
were low-Reynolds number formulations. However. 
the majority of the results presented in Section 3 are 
computed using a variant of the van Driest mixing 
length relation within the context of a Prandtl mixing 
length formulation. 

2. I. Conservation equations and bo1otdar.v conditions 

The equations presented here assume statistically 
stationary. axisymmetric. constant property flow. 
They are written in final modelled form. in cylindrical 
coordinates. using the notation in Fig. I. Reynolds 
decomposition and time averaging were applied to 
obtain the turbulent fluxes of momentum and heat. 
The flux of momentum was modelled using a gener- 
alization of the Boussinesq assumption. which uses an 
isotropic turbulent viscosity to relate the turbulent 
stress to the rate of strain. Similarly. the turbulent 
heat fluxes \vere modelled in terms of an isotropic 
eddy diffusivity multiplied by the appropriate mean 
temperature gradient. 

2. I. I. Continuity, momentum and energ!‘. 

Corltinuit~ 

Ii- - 
-T(rU)+g=O 
r cr 

(1) 

r-momentums 

O-momentum 
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where the pressure term, P, includes the 2/3pk term 
associated with the normal components of the tur- 
bulent stress tensor and the quantity Q = v,P,/C, is 
the total conversion of mechanical energy into heat 
due to direct (viscous) and indirect (turbulent) dis- 
sipation. 

2.1.2. The turbulence models. In the mean transport 
equations, the effective kinematic viscosity is given 
by v, = vt +v where the turbulent component. 
v, = C,, f,k’/&. In this expression, C,, is a constant and 
/; an empirical function that accounts directly for 
wall-damping of the turbulent diffusion process. The 
turbulent length and velocity scales in v, are found in 
terms of the turbulent kinetic energy, k, and its total 
rate of dissipation, E. Therefore, additional con- 
servation equations are required for these two quan- 
tities. In modelled form, these equations are : 

k-equation 

&-equation 

where the effective turbulent diffusivities for k, E and 
T are given by : Ik = v,/ue +v, i, = v,/o, +v and 

2, = ~,/a,-+% with Us, o, and cr representing the per- 
tinent turbulent Prandtl numbers. 

The quantity G = v,P, is the stress generation term 
in the k equation where 

The quantities represented by D, E, f,, f, and f2 in 
the above equations depend on the turbulence model. 
Table 1 shows their respective functional form for the 
three cases explored and includes numerical values for 
the remaining model constants. 

In the present formulation, the van Driest model 
reduces to a standard high-Reynolds number k--E 
model in the core flow. In the vicinity of a wall, the 
turbulent viscosity is found using a generalization of 
Prandtl’s mixing length hypothesis, namely 

(9) 
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where the mixing length, I,, is given by the van Driest 
relation [25]. The mathematical interface between 
these two submodels is determined by: (a) requiring 
that the turbulent viscosity vary continuously from 
the wall region to the core of the flow: and (b) 
assuming that the turbulence is in equilibrium (pro- 
duction equals dissipation) in the region overlap. With 
these conditions one finds at the interface 

IiP, 
kc---- and E=I’P!‘. 

c; ? 
0 !. (10) 

These two equations provide the boundary conditions 
required to solve the k and E equations in the core 
flow. The position of the matching wall-core interface 
is required to lie between ,v+ = 10 and 50 for which 
preliminary numerical experimentation is necessary. 

Two modifications were found to improve the pre- 
sent van Driest model calculations of mean velocity. 
The first was to adopt the proposal in refs. [26, 411 
for modifying the mixing length. wherein the A + con- 
stant. an effective sublayer thickness, is divided by a 
power of the shear stress ratio, T+ = T/T,, to account 
for the variations in local stress near a wall. This 
amounts to specifying 

,O=K.r[l-exp(-~(T+)~‘)]. (II) 

Although subsequent calculation showed it to be 
much less influential, the second modification rep- 
resents an attempt to account for direct effects of 
curvature on the turbulence length scale. For this we 
specify, as in ref. [26], that 1, = 10( I- /3 Ri), where Ri 
is an equivalent Richardson number for the curved 
flow, given by 

In this equation, /I = 5 is an empirically determined 
constant and, following the convention in ref. [26], 
the value of cos z is 0 in the region of flow adjacent 
to the disk surface and I in the region of flow adjacent 
to the shroud. The result is to increase I,,, in the region 
of the flow adjacent to the concavely-curved shroud 
where the circumferential component of angular 
momentum decreases with increasing radius. 

In keeping with the above curvature correction for 
the flow adjacent to the shroud, on the side of the 
matching interface near the shroud, where the k and 
E equations are solved, we follow ref. [24] where 
fi = I - C, Ri,, with C, = 0.2, an empirical constant, 
and where 

Ri =k’cosa V&V ~-- t &2 r’ tr 03) 

is now the appropriate form of the Richardson 
number, based on the local turbulence time scale. 

2.1.3. Boundary conditions. The conservation equa- 
tions were solved numerically subject to boundary 

conditions corresponding to four different corotating 
disk configurations. These are denoted Cases I4 and 
are listed below. In all cases the origin of the coor- 
dinates is located at the intersection of the axis of 
rotation and the geometrical symmetry plane between 
the two disks. 

Case I : corotating disks oj’ zero thickness 

U=O,V= R,R,W=O. 

at r=R, for O<z<t 

U=O,V=rR, W=O 

H 
at - = - 2 for R,<r<R, 

H 
at c=y for R?<r<R:+a 

C’ = 0, v = 0, w = 0 

at r=R?+a for 0~:s~ 

su -=o,~=o.w=o 
E: 

at z=O for R,<r,<R:+a. 

Case 2: heated corotating disks ofjnite thickness 
The boundary conditions for velocity are identical 

to Case 1 except that, for velocity 

H b 
at z=~+~ for R?<r,<R:+a 

and, for temperature 

T=Tn at r=R, for O<:<t+i 

r=rs at r=R,+a for O<z<fl+h 
2 2 

ST H b 
-=O at z=O and z=r+2 
;: 

for R, <r < R,+a. 

In this case, the energy equation reduces to the con- 
duction equation in the solid disk. 

Case 3 : heated corotating disks offinite thickness with 
radial and axial blowing 

iY=U,,V=R,Q,W=O,T=T, 

at r=R, 
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U=O.V=rQ. W=O,T= TH c=o,v=rs2,w=o 

H 
at ==- 

2 
and I=-: for R,<r<Rz 

H H 
at 2 = - 

2 
and -_=- 

2 
+b for R,<r<RR2 

at z=r for R1<r<R2+a 

U = 0, V = 0, W = 0, T = Ts 

H H 
at r=R,+a for ----b<:<- 

2 2 

U=O,V= R2R, W=O,T= TH 

at r = R2 for -t -bCr<-; 

Li= r/,. v= VG, W= W,,T= TG 

at Z= -t-b for R:<r<R:+a. 

The above third and sixth lines specify the boundary 
conditions in the gaps formed by the edges of the 
two disks and the shroud. To simulate the developing 
nature of the axially-directed flow we proceed as fol- 
lows: (a) the gap values UG, VG and T, are assumed 
to vary linearly with radius in the inlet gap region ; 
(b) the corresponding values found at the top (exit 
plane) gap are used as the inlet conditions at the 
bottom (inlet plane) gap; (c) the magnitude of IPo at 
the bottom gap is fixed by the mass flow requirement 
and its velocity profile is taken as uniform. 

Case 4 : two corotating disks in an enclosure with jixed 
top and bottom walls 

The boundary conditions for the previous three 
cases correspond to pairs of disks in an infinite disk 
stack. In the present case we consider the influence on 
the flow of fixed impermeable walls parallel to the 
disks. For this, two disks are placed a distance H 
apart, each disk being at a distance h from its respec- 
tive fixed parallel wall. The hub, the fixed flat walls 
and the shroud compose the enclosure boundaries. 
The boundary conditions are 

U=O,V= R,Q,W=O 

at r=R, for O$;<%+b+h 

u=o,v=o,w=o 

H 
at z=- 2 +b+h for R, ,<r<Rz+a 

u=o,v=o,w=o 

at r=R,+a for O<z$r+b+h 

dU i-v 
==o,z=o,w=o 

at z=O for R,<r<R?+a 

C’=O,V= R&U’=0 

at r = R2 f’Or :Gz$r+b. 

The specification of boundary conditions fork and E 
depends on the turbulence model used. The conditions 
used were 

ki = O.O3L’,’ and E, = __ 
0.005L 

(14) 

at the inflow locations’i’ (hub and bottom gap), where 
L = H at the hub boundary and L = a at the inlet 
gap boundary. 

At the outlet gap boundary (and the symmetry 
plane for non-blowing cases) 

?k 
- = 0 and g= 0. 
2: 

At all solid walls 

k = O(L-S and L-B model) 

E = O(L-S model) : &;?n = O(L-B model) (16) 

where n denotes distance normal to a wall. Wail 
boundary conditions for k and E are not required in 
the VD model because the eddy diffusivity is obtained 
from a Prandtl-Taylor mixing length formulation. 

To initialize the calculations for any model, we first 
specified U = 0, V = Rr, W = 0 and P = 0 through- 
out the flow and set near-wall and core values of k 
and E conforming with the distributions established 
in developed straight channel flow. For all models, 
calculations showed that the results predicted for a 
given Reynolds number, using the numerical solution 
at a different Reynolds number to initialize the cal- 
culations, converged to the same numerical solution 
as that obtained by using the original initialization 
conditions first described. 

2.2. Finite difference approximations and solution 
procedure 

The calculation domain is subdivided into a vari- 
able density calculation grid, with control volumes (oi 

cells) geometrically defined at the grid nodes for scalar 
quantities and between grid nodes for the velocity 
components. Finite difference approximations for the 
conservation equations are derived by volume inte- 
gration over each cell, subject to specific rules con- 
cerning the evaluation of fluxes and sources terms (40, 
421. In this regard, the use of the QUICK scheme [43] 
for convective transport terms and of central dif- 
ferencing for the diffusion terms imparts global second- 
order accuracy to the difference equations on a 
uniform grid. 

The set of algebraic finite difference equations is 



‘708 C. J. CHANG el al. 

solved recursively using the tridiagonal matrix algo- 
rithm. This is done as part of a solution procedure that 
is iterative in nature. In the sequence, initial values for 
all the dependent variables of the flow field are guessed 
or specified from a previous calculation. The cross- 
stream velocity components are then solved and a 
pressure correction is evaluated using the SIMPLE 
procedure described in ref. [42]. The pressure cor- 
rection is used to update the pressure and cross-stream 
velocity components respectively and, from these 
quantities, the circumferential velocity component is 
obtained. At this point, the k and I: equations are 
solved to obtain v, and, if the van Driest model is 
employed. near wall values for v, are obtained from the 
Prandtl mixing length hypothesis. Finally. for non- 
isothermal flows, the energy equation is solved for 
temperature. This iteration sequence is repeated until 
the convergence criterion is satisfied. This is that the 
largest of the normalized residuals for mass. momen- 
tum or energy be less than 5 x IO-‘. The use of under- 
relaxation factors for the dependent variables helps 
stabilize the calculation sequence. 

The numerical procedure has been carefully tested 
in the laminar flow regime; see ref. [19]. Additional 
turbulent flow verifications were conducted for this 
work. for which some of the rotating disk flow con- 
figurations investigated in refs. [l4, 181 were 
computed. These tests serve four purposes : (I) they 
provide a comparative evaluation of the turbulence 
models investigated; (2) they establish the nature of 
the grids required to generate grid-independent 
results; (3) they confirm that rotation, heat transfer 
and blowing effects are accurately predicted ; (4) they 
allow an evaluation of the assumption of steady 
axisymmetric flow, upon which we base the numerical 
calculation approach. 

The first point is addressed in Figs. 2.1 and 2.2 
which compare the various model predictions on a 
(Z = 26 x r = 62) grid with measurements of the aver- 
age and r.m.s. circumferential velocity component for 
the configuration of ref. [I21 rotating at 3600 rpm 
(Re = 22 860). That configuration corresponds to Fig. 
I. for which relative dimensions are given in Section 
1.21. Because the disk thickness, 6, was small 
(b,‘H = 0.2 I), boundary conditions corresponding to 
Case I were specified in these calculations. In the 
r.m.s. comparisons, the isotropic calculations of 
(213k) ’ ’ have been multiplied by the factor 1.3 to 
account, approximately, for the anisotropy among the 
normal stresses and the larger levels of the cir- 
cumferential r.m.s. component expected, especially 
near walls [44]. 

Of the models tested, the MVD model (see Table 
I) yielded the best results for mean velocity at both 
3600 and 1200 rpm (the latter data are not shown). 
All the models predicted a significant variation of V 
with respect to z near the shroud, which is not sup- 
ported by the measurements. It would seem that the 

calculated cross-stream flow distorts the cir- 
cumferential component of motion near the shroud 
more strongly than occurs in the experiment. A similar 
discrepancy appears in the r.m.s. results near the 
shroud which, around z/H = 0. shows calculated 
values of P higher than those measured. The smooth- 
ness and flatness of both the V and P profiles suggest 
a strong redistributive action of the turbulence on 
the flow near the shroud which none of the models 
correctly resolve. 

In the VD and MVD calculations. (2/3/i)’ ’ is 
obtained from a high Reynolds number turbulence 
model in the core of the flow. Near vvalls. the value of 
k is not required, but an approximate distribution for 
it can be computed using equation (IO). This approach 
yields qualitatively correct results for the VD model 
but unrealistic results for the MVD calculations in 
part of the near wall flow. This is attributed to the T- 

term in equation (I I) which is proportional to v, and, 
since r, -X Ii. the exponent in equation (I I) varies 
according to .r’. This causes a much faster decrease 
of I, in approaching a wall than is obtained using 
equation (1 I) as proposed by van Driest. wifhour the 
(T+)’ ’ term. In the region where I, starts to decrease 
quickly as a wall is approached, the velocity gradients 
normal to that vvall are still small. Therefore, the Pk 
term in k is small and k decreases.especially quickly. 
However, in continuing towards the vvall a region is 
reached vvhere the velocity gradients steepen quickly 
and, as a result. PL also increases, but quadratically. 
thus offsetting the decrease in I, and raising the local 
value of k. This explains the jagged appearance of k 

near the wall for the MVD calculations. 
As explained above, in the VD and SIVD models, 

k and E in the core are calculated using the boundary 
conditions stipulated by equations (10) at the sub- 
model matching interface. For the reasons just 
discussed. the interface boundary values are unre- 
alistically small. In an attempt to retain the accuracy 
of the MVD model for predicting V with the more 
realistic results given for P by the VD model, we 
replaced 1; in equations (9) and (IO) by the expression 

(,,‘[I-exp(-$)][I-exp(-$(r+)‘.)]. 

(17) 

Results for this MVD* model are also shown in Figs. 
2.1 and 2.2. They illustrate the level of compromise 
obtained between the predictions and measurements 
for Vand I? 

Fortunately. in a Prandtl mixing length formulation 
an incorrect prediction of k in the core flow does not 
directly affect the prediction of v, near a wall. The 
better predictions of Vobtained with the MVD model 
suggest that this model better resolves the wall bound- 
ary layers of the rotating disk flow, and that the effects 
of turbulence in the core are of secondary importance. 
Accordingly, the MVD model was chosen for the rest 
of the numerical calculations performed. 
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FIG. 2. I. Comparison between measurements and model predictions of the dimensionless average cir- 
cumferential velocity (a) along the midplane (z/H = 0), (b) at (r-R,)/(R, -R,) = 0.38, 0.59, 0.79. 1.00 
and 1.02 (bottom to top) for 3600 rpm. Case I boundary conditions used. Ticks on the right-hand axis 

mark the location and value of the disk speed normalized by R,R for the particular radial location. 

It is noteworthy that the MVD model predicts co- 
existing turbulent and laminar regimes of motion 
without the artificial introduction of perturbations to 
induce transition to turbulent flow. This is due to 
the recirculating action of the cross-stream secondary 
motion which transports turbulent fluid near the 
shroud into the core of the flow, thus disseminating 
the fluctuating component of motion. In regions 
where the flow approaches the condition of solid body 
rotation, such as near the hub, the model correctly 
predicts that the turbulent viscosity, vI, tends to zero. 
Figure 3, showing contour plots of k and v,, illustrates 
this point. 

The requirements for grid independence were 

analyzed by performing MVD model calculations of 
the above flow on three successively refined non- 
uniform grids. The predictions, available in ref. [45], 
revealed that a grid with (z = 26 x r = 62) nodes gave 
mean velocity results that agreed to within 1% with 
those on a grid with (-_ = 36 x r = 74) nodes. Typical 
corresponding changes in k and E predicted on these 
two grids were 3 and 4%, respectively. On the basis 
of these findings, the intermediate (z = 26 x r = 62) 
grid was chosen for the bulk of the numerical cal- 
culations and was distributed so as to contain not less 
than 10 nodes in the disk and shroud boundary layer 
regions, respectively. While the finer of the three grids 
would have yielded somewhat more accurate numeri- 
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FIG. 2.2. Comparison between measurements and model predictions of the circumferential component of 
turbulence intensity (a) along the midplane (z/H = 0). (b) at (r-R,)/(R1 -R,) = 0.38, 0.59, 0.79, 1.00 

and 1.02 (bottom to top) for 3600 rpm. Case I boundary conditions used. 

cal calculations of k and E, this was considered to be 
unnecessary given the insensitivity of the mean flow 
to the more refined calculations of k and E. 

The ability of the MVD numerical model to predict 
corotating disk flows with heat transfer and/or radial 
blowing was checked against the experimental data 
reported in refs. 114, 181. Space limitations require 
that we summarize the tests reported in ref. [4S]. In 
each case, two pairs of values of the radial blowing 
parameter, C, = Q,/vR*, and Reynolds number, 
Re = W&/v, were calculated where Q, is the air 
volume flow rate between disks in the radial direc- 
tion. For the isothermal flows in ref. [14], the pairs 
were (C, = 2507, Re = 4092) and (C, = 3123, Re = 
4077). respectively. Axial profiles of the circum- 
ferential and radial velocity components plotted at 
r/R2 = 0.545 for the first pair of values were in 

good agreement with the measurements. For the 
second pair, plotted at r/R2 = 0.773, discrepancies of 
IO-20% were found for the radial velocity component 
only. 

Similar calculations, including the radial dis- 
tribution of the disk surface local Nusseh number, 
were performed for (C, = 1400, Re = 1.8 x IO’) and 
(C, = 2800, Re = 4.4 x 10J), two ofseveral heat trans- 
fer cases with blowing investigated in ref. (181. For 
the low blowing case agreement between measure- 
ments and calculations was good, but for the high 
blowing case the calculations overpredicted the mean 
Nusselt numbers by IO-20%. For both blowing and 
heating, the qualitative features of the velocity 
components and Nusseft numbers were correctly 
predicted. The combination of experimental uncer- 
tainty in the measurements (t_ S-IO% for the mean 
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FIG. 3. MVD calculations for Case 2 boundary conditions at 3600 rpm. Plots show contours of (a) BON 
streamlines; (b) average circumferential velocity, V/RR, ; (c) turbulent kinetic energy, k/V’ ; (d) turbulent 

viscosity, v,/r. 

velocities and about + l@-15% for the Nusselt num- 
bers) and the limitations in the turbulence model com- 
bine to yield a predictive capability of the numerical 
procedure which is estimated to be within + 15-25% 
in so far as predicting blowing and heat transfer 
effects. 

In all the above, we have compared time-averaged 
measurements with numerical calculations based on 
the assumption of steady, statistically stationary, 
axisymmetric flow. The closeness of the agreement 
found with the circumferential mean velocity 
measurements of ref. [ 121 suggests that the significant 
mean flow unsteadiness observed experimentally 
(associated with circumferentially periodic axially- 
aligned vertical structures driven by shear instability) 

contributes sinusoidally to the instantaneous com- 
ponent of motion. A sinusoidal oscillation would not 
affect the mean of the instantaneous velocity signal 
but would alter its r.m.s. As explained below, this 
accounts for part of the discrepancy obsened at low 
rpm between measurements of P and its numerical 
estimate (2/3/c) ’ ‘. 

To resolve mean flow unsteadiness would require 
dispensing with the assumption of circumferential 
symmetry, which would significantly increase the 
calculation requirements. Fortunately, the tests per- 
formed show that the resolution of circumferential 
asymmetry and flow unsteadiness are not necessary 
to elucidate many quantitative and qualitative par- 
ameter dependencies of the present flow. 
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FIG. 4. MVD calculations of the circumferential component of turbulence intensity for Case 2 boundary 
conditions at 4 rpm along (a) the symmetry plane (z/H = 0), (b) the quarter plane (z/H = 0.25). 

Calculations for Case l-type boundary conditions 
on a (-_ = 26 x r = 62) grid typically required about 
2000 iterations to attain the convergence criterion, 
amounting to 360 CPU s on the Berkeley Campus 
Cray X-MP computer. 

3. NEW RESULTS AND DISCUSSION 

The MVD numerical model was used to study the 
effects of disk rotation, geometry and blowing con- 
ditions on the flow corresponding to the configuration 
of Fig. 1. This configuration is identical to that 
explored experimentally in ref. [12], the time-averaged 
data of which were used above for validation 
purposes. We summarize here the main findings of the 
numerical exploration, noting that more extensive and 
detailed results are available in ref. [45]. 

3.1. Injluence of rotation 
Calculations were performed for 1200, 2400, 3600 

and 4800 rpm, corresponding to values of the Reyn- 
olds number, Re, equal to 7620, 15 240, 22 860 and 

30480, respectively. Figure 3 shows some of the results 
for 3600 rpm. The streamlines reveal a symmetrical 
pair of eddies that are due to the pressure-driven 
cross-stream secondary motion. The circumferential 
velocity contours show that the flow near the hub 
approaches solid body rotation, while that nearer the 
shroud is strongly sheared and. as shown by the tur- 
bulent kinetic energy contours, is associated with the 
largest fluctuations in the flow. The cross-stream sec- 
ondary motion convects low speed highly turbulent 
fluid from the shroud towards the hub along the sym- 
metry plane of the flow. This results in a penetration 
of the turbulence to (r - R ,)/(Rz - R, ) = 0.5 approxi- 
mately, which coincides with the position of maximum 
circumferential velocity. 

Comparisons with time averaged measurements 
corresponding to this flow were presented and dis- 
cussed above. The experimental results show, and the 
calculations confirm, that the characteristics of the 
mean flow tend to an asymptotic limiting state with 
increasing Reynolds number. In this regard, com- 
putations of the dimensionless mean velocity com- 
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FIG. 5. MVD calculations of (T- T,)/(T,, - TS) for Case 2 boundary conditions at 3600 rpm (top) and 
4800 rpm (bottom) without (a) and with (b) dissipation included. 

ponents at the four rotational speeds were essentially 
identical. However, the computed values of k and E 
(and of temperature when dissipation is important) 
were dependent on rpm. Plots showing this depen- 
dence for k and T are given in Figs. 4 and 5, respec- 
tively. At 1200 t-pm there is a significant discrepancy 
between the measured and calculated k-profiles along 
z/H = 0 between (r-RI)/(R2-RI) = 0.2 and 0.45. 
This is attributed to the circumferentially-distributed 
axially-aligned vertical structures discussed earlier, 
which contribute to the r.m.s. of the velocity com- 
ponent without significantly affecting its average 
value. 

The temperature calculations in Fig. 5 were per- 
formed with T, - Ts = lOC, with and without the 
inclusion of dissipation. All other calculations in this 

work were performed with dissipation included. The 
isotherms are strongly distorted in the sense of the 
cross-stream secondary flow, illustrating the import- 
ance of convective heat transport for the distribution 
of thermal energy between the disks. The relatively 
high conductivity of the disks, modelled as aluminum, 
explains that their temperature is essentially that of 
the hub, TH. 

A shroud wall Nusselt number was defined by 

Nu = : s 0, dr 

t 0 K(T” - Ts) 
(18) 

where t = H/2 + b/2. This is plotted in Fig. 6, with and 
without the inclusion of dissipation, as a function of 
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FIG. 6. MVD calculations of shroud wall Nusselt number as 
a function of Reynolds number with and without dissipation 

included for Case 2 boundary conditions. 
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For a fixed rotational speed, reducing H to H/2 sig- 
nificantly increased the viscous effects relative to the 
standard (H, a) case. This was noticeable in the 
increased values of shear, dissipation and temperature 
near the shroud, and in the enlargement of the solid 
body rotation region around the hub. 

Increasing a to 20 constrained the bulk of the cross- 
stream secondary motion to a smaller flow region 
close to the shroud. In this region, even though the 
gap spacing was doubled, the shear increased slightly 
relative to the standard (H, a) case, but changes in 
temperature and in the Nusselt number were very 
small. A detailed inspection of the streamline plots in 
ref. [45] shows that increasing the gap width allows 
the cross-stream flow to penetrate the disk edge-gap 
region more completely, thus steepening the V-profile 
normal to the shroud and increasing the value of the 
shear slightly. 

The bulk of this study has focused on the flow 
between a pair of disks in an infinite stack. Depending 

1 1.0 2.0 3.0 

Rex IO-’ 

0 

_.A H. a C,=X15 C,=2229 
--- H/2. 1 
____.- H,ZP 

- H.a jc,=c,=o 
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Rex IO-* 

FIG. 7. Dimensionless shear stress (a) and Kusselt number (b) 
for different geometrical dimensions with (Case 3 boundary 
conditions) and without (Case 2 boundary conditions) blow- 

ing as a function of Reynolds number. 

on whether the disks are heated and or blowing is 
applied, boundary conditions corresponding to Cases 
1-3 above apply. To understand the influence on the 
flow due to the presence of non-rotating walls parallel 
to the disks, the boundary conditions corresponding 
to Case 4 were investigated. Figure 8 shows streamline 
and circumferential velocity contours for a flow at 
3600 rpm. The calculations were performed on a grid 
that had (z = 26 x r = 62) nodes between the sym- 
metry plane and a rotating disk and (r = 3 I x r = 62) 
nodes between a disk and its corresponding fixed wall. 
Additional cases are plotted in ref. [45]. Between the 
pair of rotating disks the flow is very similar to that 
shown in Fig. 3. for a pair of disks in an infinite stack. 
A single cross-stream eddy appears between each 
rotating disk and its corresponding fixed parallel wall. 
This eddy penetrates all the way to the hub where the 
solid body rotation flow condition cannot be main- 
tained. While the single eddy between a fixed wall and 
a rotating disk recirculates faster than either one of 
the symmetrical eddies between the pair of corotating 
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FIG. 8 . Streamlines (a) and circumferential velocity (b) contours at 3600 rpm calculated for Case 4 boundaq 
conditions. 

disks, the average circumferential velocity at any 
radial location in the first space is lower than in the 
second. The result is for a pressure gradient, acting 
from the first space into the second, to deflect the 
motion in the gap region. The consequence of this 
is a lack of symmetry of the cross-stream flow 
with respect to horizontal planes passing through 
z = H/2+ b/2 and -H/2 -b/2, respectively. (Not- 
withstanding, the reader should recall from earlier 
discussion that the assumption of symmetry yielded 
calculations of the circumferential mean flow in very 
good agreement with the measurements of ref. [12] 
where the outer pair of disks was fixed and the inner 
pair corotated.) Further computations would reveal 
the minimum number of disks required to more 
closely attain the symmetry condition, but this was 
beyond the scope of the present work. 

The dimensionless radial and axial blowing par- 
ameters are defined by C, = Qi/(vRZ), where i = r for 

the hub (radial blowing) and i = z for the bottom 
inlet gap (axial blowing) and Q is the volume flow 
rate of air in the radial direction. Calculations were 
performed for various rpm with C/C, = 0.584 and 
5.84, respectively. The results for 2400 and 4800 rpm 
with C/C, = 0.584 are shown in Figs. 9 and 10. At the 
lower rotational speed the radial blowing condition 
dictates the streamline flow pattern in the space 
between the disks; the influence of the axial com- 
ponent of motion being reduced to a region adjacent 
to the shroud no larger than the gap. At the high 
rotational speed, the Ekman boundary layers on the 
disks are more clearly defined. In this case a single 
counter-clockwise rotating cross-stream eddy appears 
near the shroud. The corresponding plots for the cir- 
cumferential velocity component and temperature 
should be compared with the non-blowing case at 
3600 rpm shown in Fig. 3. It is clear that the impo- 
sition of radial blowing significantly reduces the cir- 
cumferential velocity component everywhere in the 
space between the disks. For the conditions shown, 
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FIG. 9. MVD calculations for Case 3 boundary conditions with radial (C, = 3815) and axial CC: = 2229) 
blowing at 2400 rpm; plots show contours of (a) flow streamlines; (b) average circumferential velocity. 

V,‘RR, : and (c) temperature (T- Ts) CT,, - T,). 

radial blowing eliminates the cross-stream flow and 
homogenizes the temperature distribution between 
the disks. For fixed rpm, increasing the ratio C=/C, 
from 0.584 to 5.84 did not significantly alter the quali- 
tative aspects of the flows shown in Figs. 9 and 10. 

structures and heat from the regions between disks. 
with axial blowing, to avoid their accumulation on 
the shroud. 

Figure 7 showed the effect of combined radial and 
axial blowing on the shear and heat transfer at the 
shroud as a function of rotational speed. Similar 
results. computed for laminar flow in ref. [19], show 
that pure radial blowing significantly increases shear 
and heat transfer relative to no blowing. This is due 
to the steeper gradients of circumferential velocity 
and temperature which radial blowing induces at the 
shroud. By contrast, present calculations show that 
blowing air axially through the gap protects the 
shroud from the gradient-steepening influences of rad- 
ial blowing. This is a useful finding, for it allows 
the combination of radial blowing, to remove flow 

4. CONCLUSIONS 

This numerical study has shown that the mean vel- 
ocity and heat transfer characteristics in most of the 
space between a pair of disks corotating in an axisym- 
metric enclosure can be accurately predicted using a 
Prandtl mixing length formulation for near wall flow 
regions with a modified van Driest relation for the 
mixing length. More accurate predictions of the tur- 
bulent kinetic energy near the rotating disks and 
shroud are obtained using an unmodified van Driest 
relation in the mixing length approach or. alter- 
natively, with a low-Reynolds number turbulence 
model formulation. but this is at the expense of less 
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FIG. IO. MVD calculations for Case 3 boundary conditions with radial (C, = 3815) and axial (C: = 2229) 
blowing at 4800 rpm; plots show contours of (a) flow streamlines; (b) average circumferential velocity, 

V/RR, ; and (c) temperature (T- T,)/(T,, - T,). 

accurate mean velocity results. All the models 
explored in this study overpredict the intensity of the 
cross-stream secondary motion near the shroud and 
its effect on the distribution of the turbulent kinetic 
energy. The result is a larger penetration of flow from 
the shroud region into the core than actually takes 
place. Presumably, therefore, the distributions of 
other convected scalar quantities in this region, such 
as temperature, are also subject to a similar erroneous 
distribution. 

The numerical procedure is based on the assump- 
tion of steady, circumferentially symmetric flow. 
However, time-resolved measurements reveal an 
unsteady, circumferentially periodic motion. Not- 
withstanding, the predictions show very good agree- 
ment with time averaged measurements of mean 
velocity and heat transfer in most of the flow. 
Discrepancies that arise between measurements and 
calculations of the velocity r.m.s. in the core of the 

flow are attributed to non-turbulent, large-scale, cir- 
cumferentially periodic vertical structures that arise 
from intense shearing of fluid at the curved enclosure 
wall and which are not resolved numerically. The 
magnitude of this discrepancy appears to decrease 
with increasing disk rotational speed, a condition 
which favors an asymptotic limit state for the flow 
at high Reynolds number. From these findings we 
tentatively conclude that the non-turbulent oscillatory 
component of motion must be close to sinusoidal in 
nature and, while it affects the measured r.m.s., it has 
little or no influence on the time-averaged velocity. 

The numerical procedure was used to explore the 
effects of rotation, geometry and blowing on the flow 
and heat transfer in the space between the disks. The 
results show that viscous heating of the air is sig- 
nificant as of 2400 rpm for the configuration(s) of 
interest. Decreasing the spacing between disks leads 
to increased shear and heat transfer at the shroud 
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wall. Increasing the gap width between the rotating 
disks and the shroud 

a com- 

while avoiding their accumulation (with 

the attendant increases in shear and heat transfer) on 
the shroud. This last point should be of special interest 
for the improved performance of disk storage devices 
in the computer industry. 
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CALCUL DE LA CONVECTION TURBULENTE ENTRE DES DISQUES COROTATIFS 
DANS DES ENCEINTES AXISYMETRIQUES 

R&sum&-Une etude numerique est conduite pour un ecoulement turbulent dans un espace non obture 
entre une paire de disques bioques sur le meme arbre et une enceinte axisymetrique. La procedure aux 
differences finies (Chang et al., J. Heat Transfer 111, 625-632 (1989)) est ttendue pour inclure un modele 
de turbulence (/C--E) standard. Une relation de van Driest qui tient compte des elTets de la courbure de 
I’ecoulement et du cisaillement parietal sur les &chelles de longueur, est utilise en conjunction avec l’hy- 
pothese de longueur de melange faite pres de la paroi. Le systeme d’equations est rbsolu en supposant un 
ecoulement a proprietes constantes, a symetrie circulaire et statistiquement permanent. Cette approche 
p&lit des rtsultats de vitesse moyenne et de transfert thermique en bon accord avec les don&es exp&i- 
mentales. Les predictions revelent un ecoulement qui, en variables adimensionnelles, tend vers un ttat 
asymptotique limite aux grands nombres de Reynolds. En I’absence de soufflage, une paire symttrique de 
tourbillons transverses a l’ecoulement apparait prts de la paroi de l’enceinte et leur rotation augmente avec 
l’accroissement de la vitesse de rotation des disques. Des vitesses de rotation tlevies, au dessus de 2400 tr 
min-’ dans la configuration etudiee, et des espacements faibles des disques, induisent de grandes valeurs 
de cisaillement et de temperature (dues P la dissipation visqueuse) au voisinage de la paroi de l’enceinte. 
L’tcoulement et ses caracttristiques de transfert thermique peuvent etre fortement alter&s par les effets 
combines de soufflage radial et axial. Specifiquement, on montre que le soufflage axial reduit sensiblement 

le cisaillement et le transfert thermique a la paroi courbe de l’enceinte. 

BERECHNUNG DER TURBULENTEN KONVEKTION ZWISCHEN GLEICHSINNIG 
ROTIERENDEN SCHEIBEN IN ACHSENSYMMETRISCHEN HOHLRAUMEN 

Zusammenfassung-Die turbulente Striimung im freien Raum zwischen zwei koaxialen, gleichsinnig rotier- 
enden Scheiben in einem festen achsensymmetrischen Hohlraum wird numerisch untersucht. Das finite 
Differenzenverfahren nach Chang et al. (J. Hear Transfer 111, 625-632 (1989)) wird urn ein Standard- 
Zweigleichungs-(k-s)-Turbulenzmodell fiir den Kembereich der Stromung enveitert. Eine Beziehung nach 
van Driest, die den EinfluB der Stromlinienkriimmung auf die kennzeichnende Abmessung beriicksichtigt, 
ist in Verbindung mit der Prandtl’schen Mischungsweghypothese angewandt worden, urn die Stromung 
nahe der Wand nachzubilden. Das Gleichungssystem wutde unter den Annahmen konstanter Stoffei- 
genschaften sowie in Umfangsrichtung symmetrischer und quasistationarer Strcimung gel&t. Die berech- 
neten Werte Wr die mittlere Geschwindigkeit und den Wlrmeiibergang stimmen gut mit zeitgemittelten 
Versuchsdaten i&rein. Die Berechnungen ergeben filr die StrBmung bei Anwendung dimensionsloser 
Variabler einen Verlauf, der bei hohen Reynolds-Zahlen asymptotisch gegen einen begrenzenden Wert 
strebt. Ohne Einblasung ergibt sich ein symmetrisches quergerichtetes Wirbelpaar nahe der Hohlraumwand, 
dessert Rotationsgesehwindigkeit mit derjenigen der Scheiben ansteigt. Hohe Rotationsgeschwindigkeiten 
(bei der hier untenuchten Anordnung oberhalb von 2400 Umdrehungen pro Minute) und kleine 
Scheibenabst8nde fiihren zu goBen Schubspannungen und Temperaturen in Wandniihedies wird durch 
die viskose Dissipation verursacht. Strcimung und WBrmeiibergang konnen sich durch radiale und axiale 
Einblasungen drastisch Bndern. Insbesondere zeigt sich, daB eine axiale Einblasung Schubspannung und 

WIrmeiibergang an der gekriimmten Hohlraumwand wesentlich reduziert. 
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PACYET TYPBYJ’lEHTHOtl KOHBEKWH MEmY AWCKAMki, OAHOBPEMEHHO 
BPAl&UO[9WMHCB B OCECHMMETPWIHbIX IIOJIOCT~X 

-4HcneHno nccnenycTcn Typ6yneHTHoc TCPCHHC B cBo6oJlH0M npocTpaHcTW McxJiy myMn 

3ax~~e~RBUC~coocll~~~ahar,O~OB~MCHHoB~~~rBHCnO~~O~~- 

CIIMM~T~HSHO~~ IIOJIOC~~. MCTO~ rorrewux pamx~eii (Chang et al. (J. Heat Traqfkr 111, 625-632 
(1989))) pacuolpCH BuMlpemiCM CTallLWpTHO~ LWyXnapaM~HgcCrO~ k-f3 MOJlCJDl Typ6yJlCHTlIOCTR B 

nnpc noToxa CooTaouie~l~e bait JJpwra, ywfnd~asotwe wwniw I;PHBH~H~I d Tora a casura y 

C~CH~~~H~~H~~~~~~I~UI~~~~~UJUIH~HC~OJW~CTC~BCO~~~HHRC~O~O~~~~~~ 

~HCcMC~CHllR~MOn~posluma~H~CHHOrO TC’ICHIUI. CHCTeMay~BHCH~~UWTC~BIQWllO- 

noxesi~ cxMhwpn=nioro no orpyrarocm cTaTwTHvzcxH crauioHapHor0 TcqeHpuI c nocfollRwk411 

CfdCTBahw. AaH& [IOLIXOLI nO3BOnwT nOnyvmb 3HaSeHHI CpeJU!Iefi CXOpOCTH H Te~oOepeHOCa, 

C~OpslCXO~luO~r~acyto~xC~~elur~~OB~MeHH3I~~BMCW~bHblMH~H~~pH8e- 

newwe B 6e3pawepHaa nepehfeHux pacwTbl ~OL~~YB~IOT, ~0 Teqetufe npa ~btcoxnx 3Raqewixx 

PHCJU Pei#HOJlbJW Cl'PeME'TC# It IIpe&%lbHOlrry aCHMIITOTH'!tcXOMy COCTOIMMO. B CJly'lae OTCyTCTBHn 

snysa y crem nonocm BO~HHX~~T cn~eTpHww4 napa B~xpcil, nonepewwx norory, Bpauetnfe 

XOTOpblX yBeJlH'lHBaeTCl C pOCTOMCKOpocTR BpaLUeHHn LWiCXOB.BMcoKHe CKOpOCTH BpalUeHIiX,ilpeBtJ- 

UIaIoulHe B paCCMaTpHBaeMOfi XOH~HlJ'paUJlH 2400 06 MHH-‘, H m.me mrepeam ~exuty imcxaMH 

o~~c~~BJIHB~I~T 6omduxe 3HaqeHHx cnBHra H TeMnepaTypu(e cwxy ~~i3xm0il LuicCHnaumr)~6n~3~ 

CTeimH IIOJIOCTH.X~~~XT~~HCTHKH Teqemn ~Te~onepe~~~a bforyr~yuecrsc~~~ HsMeHaTbcaupa con- 

MeCTHOM~eii~BHH pWIWlbHOr0 HaXCHaRbHOrO BJlyBa. B YaCTHOCTH,lIOKa3aHO,'lTO axCHa.lIbHti B!lyB 


